IP SWITCHES

1. Receive INFLOWS

IP SWITCHES...

Receive INFLOWS BUFFER & Route

IP SWITCHES

3. Transmit OUTFLOWS

DATA OUT

IP SWITCHES

3. Transmit OUTFLOWS

DATA OUT

TRAFFIC SHAPING AFFECTS HOW MUCH BUFFER AN IP SWITCH NEEDS

WATER OUT

IN THIS ANALOGY...

 $\Delta t_1 \approx \Delta t_2 \approx \Delta t_3 \approx \Delta t_4$

IF THE WATER FLOW IS UNIFORM

UNIFORM WATER FLOW

IF THE WATER FLOW IS UNIFORM

UNIFORM WATER FLOW

AND AMOUNT OF AMOUNT OF WATER = WATER ENTERING EXITING

IF THE WATER FLOW IS UNIFORM

UNIFORM WATER FLOW

THE BUCKET NEVER OVERFLOWS

IF PACKET SPACING IS UNIFORM (TRAFFIC PROFILE IS VERY NARROW)

DATA OUT

IF PACKET SPACING IS UNIFORM (TRAFFIC PROFILE IS VERY NARROW)

AND

AMOUNT OF DATA ENTERING AMOUNT OF DATA EXITING

IF PACKET SPACING IS UNIFORM (TRAFFIC PROFILE IS VERY NARROW)

AMOUNT OF DATA = ENTERING

AMOUNT OF DATA EXITING

SWITCH MEMORY NEVER OVERFLOWS

IF THE WATER FLOW IS "BURSTY"

NON-UNIFORM WATER FLOW

IF THE WATER FLOW IS "BURSTY" AND **AVERAGE AVERAGE** AMOUNT OF _ WATER WATER

ENTERING

AMOUNT OF EXITING

NON-UNIFORM WATER FLOW

IF the water flow is "bursty"

NON-UNIFORM WATER FLOW

AND

AVERAGEAVERAGEAMOUNT OFAMOUNT OFWATERWATERENTERINGEXITING

THEN WATER LEVEL VARIES...

...AND IF THE BUCKET ISN'T BIG ENOUGH...

IF THE WATER FLOW IS "BURSTY" AND AVERAGE AVERAGE AMOUNT OF AMOUNT OF

AMOUNT OF AMOUNT WATER WATER ENTERING EXITING

THEN WATER LEVEL VARIES...

...AND IF THE BUCKET ISN'T BIG ENOUGH...

THE BUCKET OVERFLOWS

NON-UNIFORM WATER FLOW

IF PACKET FLOW IS "BURSTY" (TRAFFIC PROFILE IS WIDE)

DATA OUT

IF PACKET FLOW IS "BURSTY" (TRAFFIC PROFILE IS WIDE)

DATA OUT

AND

AVERAGE AMOUNT OF DATA ENTERING AVERAGE AMOUNT OF DATA EXITING

AND

AVERAGEAVERAGEAMOUNT OFAMOUNT OFDATADATAENTERINGEXITING

THEN BUFFER LEVEL VARIES...

....AND IF THE SWITCH BUFFER ISN'T BIG ENOUGH...

DATA IN

DATA OUT

DROPPED PACKETS

IF PACKET FLOW IS "BURSTY" (TRAFFIC PROFILE IS WIDE)

AVERAGEAVERAGEAMOUNT OFAMOUNT OFDATADATAENTERINGEXITING

THEN BUFFER LEVEL VARIES...

...AND IF THE SWITCH BUFFER ISN'T BIG ENOUGH...

THE BUFFER OVERFLOWS

CONCLUSION

AS NON-UNIFORM WATER FLOWS REQUIRE A BIG ENOUGH BUCKET TO ACCOUNT FOR WATER LEVEL VARIATION...

CONCLUSION

AS NON-UNIFORM WATER FLOWS REQUIRE A BIG ENOUGH BUCKET TO ACCOUNT FOR WATER LEVEL VARIATION... ...NON-UNIFORM DATA FLOWS (WIDE TRAFFIC SHAPES) REQUIRE ENOUGH IP SWITCH BUFFER MEMORY TO ACCOUNT FOR DATA LEVEL VARIATION WITHIN THE SWITCH

CONCLUSION

TAKEAWAYS

- SUCH DEEP BUFFER MEMORY SWITCHES ARE AVAILABLE AND CAN BE SPECIFIED WHEN USING SMPTE ST 2110-21 WIDE TRAFFIC SHAPING. A DESIGN WITH WIDE TRAFFIC SHAPING ENABLES AN ALL SOFTWARE SOLUTION AND SUPPORTS THE MOVE TO DEMATERIALIZED FACILITIES
- USING SMPTE ST 2110-21 NARROW
 TRAFFIC SHAPING MINIMIZES SWITCH
 MEMORY REQUIRED

DATA OUT

...NON-UNIFORM DATA FLOWS (WIDE TRAFFIC SHAPES) REQUIRE ENOUGH IP SWITCH BUFFER MEMORY TO ACCOUNT FOR DATA LEVEL VARIATION WITHIN THE SWITCH